
Intermediate Frequency Data Aquisition

Device (IF_DAD)
Team name: sddec23-20

Group Members: Nathan Ayers, Matthew Caron, Michael Levin, and Rodrigo

Romero

Advisor: Dr. Mohammad Tayeb Al Qaseer

2

Table of Contents

Table of Contents... 3

Introduction..4

Device Abstract of signal processing...4

Project Design...5

Design Approach... 6

Computer Interface.. 6

Digital Signal Processing (DSP)..7

Hardware..8

Design Requirements... 9

Implementation Details... 9

Technical Details..9

Workflow Methodologies..10

Waterfall...10

Agile... 11

Testing Process and Results...12

Operation Manual..14

GUI Setup (Ideal)...18

GUI Setup (Actual)...18

Conclusion.. 18

3

Introduction

In the world of mmWave imaging it is crucial to have instruments that are able to collect phase

and magnitude information from a reference signal. From the phase and magnitude information

collected you can calculate data such as reflection coefficients, impedance measurements, and

attenuation at various mmWave frequencies.

This project set out to do just that. While utilizing data acquisition components such as: an ADC,

a DAC, and an FPGA. Our project did signal processing on output and input signals to calculate

such relevant data. This processing allows devices to capture phase and magnitude of an

intermediate frequency signal.

This device also has the potential to be connected to an RF board that sends and receives

mmWaves in Ka band: 26.5 GHz - 40 GHz. These waves then interact with materials and will

result in reflections which create corresponding attenuation and phase shifts that the IF board can

read and send to a PC to be plotted in an easy to use user interface.

Device Abstract of Signal Processing

This device calculates the phase shift and attenuation by utilizing the inner products of the output

signal and input signal to calculate the phase and magnitude of the received signal. What this

essentially means is this calculates how “much” the input signal is “aligned” with the output

signal. For example if the output signal is…

𝑓𝑜𝑢𝑡(𝑡) = 𝑐𝑜𝑠(𝑤𝑡)

Then the received IF signal will be a signal of the same frequency but phase shifted by θ and

attenuated by some constant A. So the received signal could look like…

𝑓𝑖𝑛(𝑡) = 𝐴𝑐𝑜𝑠(𝑤𝑡 + θ)

And if you find a signal fout⊥(t) that is 90॰ out of phase from fout(t) such as..

4

ℎ𝑖𝑙𝑏𝑒𝑟𝑡(𝑓𝑜𝑢𝑡(𝑡)) = 𝑓𝑜𝑢𝑡⊥(𝑡) = 𝑠𝑖𝑛(𝑤𝑡)

Finally you can take the inner product of with , and respectively to𝑓𝑖𝑛(𝑡) 𝑓𝑜𝑢𝑡(𝑡) 𝑓𝑜𝑢𝑡⊥(𝑡)

calculate a complex number whose magnitude is A/√2 and phase is θ

The “real” part of this complex number is found by taking the inner product of and𝑓𝑖𝑛(𝑡)

. The derivation can be seen below…𝑓𝑜𝑢𝑡(𝑡)

< 𝑓𝑜𝑢𝑡(𝑡), 𝑓𝑖𝑛(𝑡) > = ∫𝑐𝑜𝑠(𝑤𝑡) ⋅ 𝐴𝑐𝑜𝑠(𝑤𝑡 + θ) 𝑑𝑡

< 𝑓𝑜𝑢𝑡(𝑡), 𝑓𝑖𝑛(𝑡) > = 𝐴∫𝑐𝑜𝑠(𝑤𝑡) ⋅ [𝑐𝑜𝑠(𝑤𝑡) 𝑐𝑜𝑠(θ) − 𝑠𝑖𝑛(𝑤𝑡) 𝑠𝑖𝑛(θ)]𝑑𝑡

< 𝑓𝑜𝑢𝑡(𝑡), 𝑓𝑖𝑛(𝑡) > = 𝐴∫𝑐𝑜𝑠(𝑤𝑡) ⋅ [𝑐𝑜𝑠(𝑤𝑡) 𝑐𝑜𝑠(θ)]𝑑𝑡

< 𝑓𝑜𝑢𝑡(𝑡), 𝑓𝑖𝑛(𝑡) > = 𝐴/2 𝑐𝑜𝑠(θ)

Conversely to find the “imaginary” component you take the inner product of , and𝑓𝑖𝑛(𝑡)

𝑓𝑜𝑢𝑡⊥(𝑡)

< 𝑓𝑜𝑢𝑡⊥(𝑡), 𝑓𝑖𝑛(𝑡) > = ∫𝑠𝑖𝑛(𝑤𝑡) ⋅ 𝐴𝑐𝑜𝑠(𝑤𝑡 + θ) 𝑑𝑡

< 𝑓𝑜𝑢𝑡⊥(𝑡), 𝑓𝑖𝑛(𝑡) > = 𝐴∫𝑠𝑖𝑛(𝑤𝑡) ⋅ [𝑐𝑜𝑠(𝑤𝑡) 𝑐𝑜𝑠(θ) − 𝑠𝑖𝑛(𝑤𝑡) 𝑠𝑖𝑛(θ)]𝑑𝑡

< 𝑓𝑜𝑢𝑡⊥(𝑡), 𝑓𝑖𝑛(𝑡) > = 𝐴∫𝑠𝑖𝑛(𝑤𝑡) ⋅ [𝑠𝑖𝑛(𝑤𝑡) 𝑠𝑖𝑛(θ)]𝑑𝑡

< 𝑓𝑜𝑢𝑡⊥(𝑡), 𝑓𝑖𝑛(𝑡) > = 𝐴/2 𝑠𝑖𝑛(θ)

These real and imaginary coefficients form a complex number that gives you phase and

magnitude information about the received IF signal with respect to the IF output signal, and these

coefficients will be different for various materials the mmWaves reflect off of.

Project Design

Making a data acquisition device necessarily involves a complex, interconnected design. For our

purposes, data needs to be created in a digital environment to be sent through a digital to analog

converter (DAC). This analog signal on its own is not sufficient as the DAC can’t produce

millimeter wave signals. It must be manipulated in such a way that our antenna can properly

transmit a high enough frequency signal. The antenna has to collect that signal, manipulate it for

5

suitable analog to digital conversion (ADC), and analyze accordingly. Through this section, we

will describe in more detail the process and expectations for such a device.

Design Approach

There are three main functions that need to be completed for the device to function as intended.

The computer interface has to initialize and trigger the signal created in the FPGA as well as

collect the data that comes from the FPGA. The Digital Signal Processing (DSP) needs to take

the raw data from the ADC and convert it into something that the UI program can easily display

and analyze. The backbone of the device are the hardware components such as the FPGA, ADC,

DAC, Filters, and up/down converters which all need to be interconnected and synchronized to

adequately move and manipulate the signal.

Computer Interface

For this component, we used a Matlab app as our GUI for the user to input the port on which the

USB is connected, the desired analysis on the data, and to trigger the program with the start

button. It also needs to communicate all of the relevant information such as the status of the

program and whether or not it was successful. Internally, the program uses the inputted port to

connect to the FPGA through USB and creates the variable which will trigger an interrupt to

create and send the signal when the start button is pressed.

It will use the same port with which it is connected to collect the real and imaginary values

produced by the DSP. It then produces a plot of the real values, imaginary values, the phase of

these numbers, or their magnitude depending on the user input.

6

Digital Signal Processing (DSP)

Within the FPGA, there is a preprogrammed sine function which is sent out through the DAC.

After the hardware transmits and receives the signal, the ADC produces raw, binary data which

can then be processed. The original output signal is multiplied by the raw data to produce the real

value. It is also shifted 90 degrees and again multiplied by the raw data to produce the imaginary

values. These two values are outputted from the FPGA in a real then imaginary format for all the

samples that were received.

7

Hardware

The signal when transmitted from the DAC, is a sine wave which is IF (10 MHz) which is not

sufficient to penetrate the desired samples. To get the needed millimeter wavelength, the signal

has to go through an up converter which converts the signal into RF (26.5 - 40 GHz). It’s sent

through the antenna which bounces off the sample where some of the signal is picked up by the

antenna. To properly collect the signal it must be converted back to IF. The ADC can finally

convert the signal into the raw data to be analyzed.

8

Design Requirements

Much of the criteria for this project can be seen through the design methodology. For the

hardware, we expected that the signal would be able to transfer the signal through each of the

components cleanly with minimal noise. It should accurately convert the signal from IF to RF

and vice versa so that the DSP can appropriately manipulate the received data. The raw data

must be properly converted using the original signal and its 90 degree phase. The accuracy of the

convolution between the two signals determines the accuracy of the real and imaginary values so

it has to be synchronized precisely. To do this, we will need a 100 MHz clock which can trigger

the sample reception. Lastly, the data must be organized clearly in a file that the Matlab program

can read.

Implementation Details

Technical Details

Restated from Project Design, four modules compose this project; first, the hardware consists of

a PCB with an ADC and DAC, four precision SMA coaxial cables, and features a connection to

9

the FPGA development board. The FPGA development board is the Alchitry AU featuring the

Xilinx Artix 7 FPGA. The interface between the ADC/DAC and the development board is

crucial to the design due to a need to retain signal integrity.

Another module is the Serial Peripheral Interface (SPI), which configures registers from the

FPGA to the mm-wave radar portion of the circuit, which is utilized to program the up and down

converters. The code itself will be written in Verilog using Vivado. Also utilizing Vivado is the

DSP block, which sends real and imaginary signal components to the UI; this module is written

in a mix of Verilog and C via the Microblaze processor.

Lastly, the UI is written using MATLAB's App Designer Suite, allowing for blocks to be placed

to form a GUI, a very simple process; the original User Interface was to be written for an FTDI

chip with the D3XX. Unfortunately, the UI designer struggled with this version of FTDI

software, so a last-minute change was made to use MATLAB as the UI vias a serial port in the

FTDI chip.

Workflow Methodologies

Waterfall

This project embodied the waterfall methodology because of the perceived sequential order of

implementation. We interpereted the order as first PCB, then FPGA (SPI/DSP), and finally the

User Interface. The waterfall methodology dictates that each step depends on the previous step's

10

output, meaning that the way the DACs or ADCs or placed and routed to the FPGA development

board will affect what pins the FPGA programmer communicates with. With that being said, the

FPGA programmer is still responsible for preparing to implement their work in advance, even if

they do not know what pins they will use. The tiers of the waterfall methodology are typically

listed as Requirements, Design, Implementation, Verification, and Deployment; it is a good rule

of thumb to follow the step in front of you by one step, like a D flip-flop. So, if the PCB is in the

Verification phase, the FPGA programming shall be in the implementation phase.

The waterfall method is only perfect if the group communicates well despite their independence

and maintains high self-accountability. It is more difficult to hold others accountable without a

constant authority figure who does not exist in a project of this magnitude. Another issue that can

arise from the waterfall method is deadline creep, where one missed deadline can push other

deadlines back, and that delay propagates through the entire project.

Our group struggled with many side effects of the waterfall method; sometimes, we needed more

accountability for our contributions. We were also guilty of letting our deadlines come and go.

We may have set overly optimistic goals, but we could have done better to manage those

deadlines passing us by. Some of us never developed a clear picture of what the project was

intended to be, and that is typically an issue; the project needs to have a very clear, well-defined

pathway.

Agile

The alternative to the waterfall methodology is Agile, a continuous cycle of collaboration

through planning, execution, and evaluation at the end of each cycle. It focuses on breaking up

objectives into digestible tasks that can be planned and completed in as little as a few days.

While a waterfall methodology may have only one chance to evaluate a participant's

contributions over the entire project, the Agile methodology offers the opportunity to critique a

participant at least once weekly.

Agile is a great system for many leading-edge companies, but it requires much effort to set up

and organize multiple weekly meetings. Our solution to improve our outcomes would be to

11

create a more vigilant waterfall with weekly conversations regarding status, roadblocks, project

needs, and more.

Testing Process and Results

To create a standardized testing procedure we created a 10 MHz signal from the IF board then

fed the output into the reference port of a function generator. This allowed us to utilize the

function generator to precisely control the phase of the signal received to the IF board. This

output was then fed into an attenuator to control the amplitude of the output signal. A block

diagram and photo can be seen below to explain our setup.

We then ran the phase shift test and attenuation test separately to confirm we were getting the

correct results

First we ran the attenuation test. This test was done with a 0 - 50 dB attenuator; the signal was

fed through this attenuator and back into the IF board. We did not do any phase shifting of the

signal for this test.

This test was swept from 0 dB to -50 dB with -10 dB increments. The results for this test can be

seen below.

12

The orange trace is the controlled attenuation meaning this is the actual attenuation and the blue

trace is the calculated attenuation by the IF board. From this data the IF board is able to calculate

the attenuation well up until -40 db since the plot starts diverging.

The next step we took was testing the phase shifting like was written before we utilized the

function generator to shift the relative phase of the IF signal from 0° to 180° then -180° to 0°.

The plot of this test is shown below.

13

As the plot shows from this test the controlled phase shift from the function generator is the

orange trace and blue trace is the calculated phase output from the IF board. From this plot we

can tell that the prototype is obviously able to track the phase shift well.

Operation Manual
First connect the board to an external 5V power supply with the red and black wires as seen

below

Then connect the USB-C cable on the lower side of the FPGA as shown below

Then connect the other side of the USB cable to the USB input to your PC

14

Then open up your device manager on your computer to find which serial communication port

the device is connected to

15

Once the connection is established, the mm-Wave Radar UI screen opens up.

In this screen, the green, yellow, and red denote the status of the process represented in the

‘start’ button.

The ‘Y-axis units’ selection window allows the user to plot different parameters of collected data,

which are plotted in the right side of the screen.

The window ‘Test Results’ gives a comment on the processed data.

16

The following screen is an example of established connection and shows that the system is ready

to process data.

In this case the ‘magnitude’ has been selected to be processed; and the screen shows that the

system is ‘In-progress’.

17

GUI Setup (Ideal)

In a perfect world where the FPGA has been programmed to wait for a RX signal, also known as

a handshake, the GUI would simply send a signal out of its TX port to the FPGA which would

initiate a sequence, starting the IF circuit. The GUI had been implemented for this utility where

the user only had to enter the correct COM port and the START button would turn green, the

button sequence can only initiate and transmit over the serial port if the button is green. There are

edge cases where the button is green and the user enters an incorrect but available serial port, this

will be harmless as the Serial read and write functions will simply timeout. If the COM port is

18

set to the correct Com port expect time for communication to vary depending on the amount of

samples being sent from the FPGA, and the amount of time it takes for FPGA to sample and

output the data, therefore, the timeout variable will be set to a larger than default (10 sec)

amount.

GUI Setup (Actual)

We were not able to read Serial from the GUI with SPI, so the method we have to use if we want

to utilize the GUI is to start the FPGA and the GUI at similar times and ensure that the DSP

output to the GUI RX happens before the Serial Read function in MATLAB times out. This is

obviously not a sustainable option but we implemented this to test the GUI and the DSP together,

and as you can see in the last two pictures of the GUI above, it is receiving the correct DSP data,

proving that DSP, HW, and UI are functional and interact properly.

Conclusion

The project successfully met its objectives by designing and implementing a functional IF circuit

for the mm-wave imaging radar system. The comprehensive testing validated the circuit's

capabilities, including accurate attenuation calculation and effective tracking of phase shifts. The

utilization of FPGA technology and a user-friendly MATLAB-based UI demonstrated the

project's technical proficiency. The system is now ready to collect phase and magnitude

information from a reference signal.

Future work includes the implementation of SPI to communicate the FPGA with upconverter and

downconverter, as well as the quantification of the measured error compared to the theoretical

results.

19

